
APPLICATION NOTE 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Jitter Measurement at 
Low Probability Levels, Using 
Optimized BERT Scan Method 
 

 

  

http://www.keysight.com/
http://www.keysight.com/


             2 

Introduction 
Jitter, in the context of high-speed digital data transmission, is usually defined as the deviation of the 
decision threshold crossing time of a digital signal from its ideal value. Jitter describes a timing 
uncertainty, and therefore has to be considered when we look at the timing budget of a design. In one 
sense, jitter is just another component that makes part of the bit period unusable for sampling, just like 
setup–and hold times. However, unlike setup- and hold times that are usually thoroughly specified for 
logic families and can be taken from data sheets, jitter is a function of the design and has to 
be measured. 

Jitter is caused by a great variety of processes, for example, crosstalk, power supply noise, bandwidth 
limitations, etc. Therefore, there are many different categories of jitter. Depending on whom you ask, jitter 
is categorized as bounded and unbounded, correlated and uncorrelated, data-dependent and non-data-
dependent, random and deterministic, periodic, and non-periodic, to just name the most common ones. 
What is undisputed however is that all the different kinds of jitter add up to a quantity that is called total 
jitter (TJ). This is the quantity that you have to account for in your design, and this paper describes one 
way to measure it quickly and accurately. 

Our approach uses a bit error ratio tester (BERT), the only instrument available today that can directly 
measure TJ peak-to-peak values. Total jitter measurement methods using BERT scans have been 
available for a long while, however, the long measurement times required for a full scan limited the use to 
characterization applications where direct measurements with good accuracy are required. By careful use 
of statistics and probability theory, we were able to reduce measurement times by more than one order 
of magnitude. 

This paper is organized into four sections: in the first and second sections, we recall the basics of jitter 
and bit error ratio analysis and introduce the necessary probability theory. Section three shows how full 
bathtub measurements are measured conventionally, and one common optimization. In the last section, 
we present the bracketing approach to total jitter measurement and show two example implementations. 

 

Jitter 
Analog and digital definitions of jitter 
There are two definitions of jitter, an analog and a digital one. In the analog world, jitter is also known as 
phase noise, and is defined as a phase offset that continually changes the timing of a signal: 

S(t) = P(t + ɸ(t)) 

where S(t) is the jittered signal waveform, P(t) is the undistorted waveform, and ɸ(t) is the phase offset or 
phase noise. This definition is most useful in the analysis of analog waveforms like clock signals and is 
frequently used to express the quality of oscillators. 

In the digital world, we’re looking only at the 1/0 and 0/1 transitions of the signal, and jitter is therefore 
only defined when such a transition occurs. The jittered digital signal can be written as 

tn = Tn + ɸn 

http://www.keysight.com/
http://www.keysight.com


             3 

where tn is the time when the nth transition occurred, is the ideal timing value for the nth transition, and ɸn 
is the time offset of this transition, also known as the timing jitter. 

Note that there are many possible choices for Tn: physical quantities such as threshold crossings of a 
reference clock or a recovered clock, or arithmetic quantities, like multiples of the nominal bit duration at 
the given data rate. This is something to always keep in mind when making jitter measurements since 
results can vary dramatically with the choice of the reference. A drastic example is spread spectrum 
clocking (SSC), where low-frequency jitter is deliberately introduced to keep emissions in regulated 
frequency bands below the allowed maximum; a jitter measurement that uses a clean, non-SSC clock as 
the reference will show the desired SSC as jitter.  

Jitter categories 
Every high-speed digital link in a design is subject to many jitter sources, each with different root causes, 
characteristics, and possible design solutions. Examples are: 

• Inter symbol interference (ISI), which is caused by attenuation and bandwidth limitations of a 
transmission structure. ISI is a function of the data rate, board layout and material, and the data 
pattern sent over the link. Most multi-gigabit designs today use transmitter pre-emphasis or receiver 
equalization to deal with this and also limit the maximum run-length of continuous 1s or 0s by the use 
of 8b/10b coding or the like. 

• Switching power supply crosstalk, which is caused by an improperly decoupled power distribution 
on a PCB or inside of a chip package. The resulting jitter is periodic with a frequency that is typically 
many orders of magnitude lower than the data rate. 

• Noise, either thermal noise in the transmitter and receiver chips, or other noise coupled into the 
transmission structure. Jitter caused by noise usually has a very wide bandwidth. 

 

One widely accepted classification system divides total jitter (TJ) into random jitter (RJ) and deterministic 
jitter (DJ); DJ is then further divided into correlated data-dependent jitter (DDJ) and uncorrelated periodic 
jitter (PJ). Detailed descriptions of jitter categories and separation techniques can be found in Figures 1, 
2, and 3. For most of the analysis in this paper, we will use a TJ mixture that consists of a random part 
and a periodic part only. The major difficulty of TJ measurement stems from the unbounded nature of RJ, 
and we wouldn’t gain any insight if we added a correlated term to the deterministic jitter. 

Jitter as a time waveform 
The analog jitter definition as a continuous function of time is a vivid one, so we’re going to use it in some 
places in this paper, even though we’re interested in digital jitter analysis mostly. We don’t lose anything 
by that since we can simply sample it at regular intervals later. The total jitter continuous-time waveform is 
the sum of all independent jitter component time waveforms: 

J(t) = PJ(t) + RJ(t) + DDJ(t) +... 

http://www.keysight.com/
http://www.keysight.com


             4 

 

Figure 1. The total jitter time waveform is the sum of the individual components 

Figure 1 shows an example for a 10.0 ps sinusoidal PJ with 2.0 MHz and a 1.5 ps RMS RJ, over an 
observation period of 1 µs. Since no instrument exists today that can directly measure the jitter time 
waveform, we’re using simulated data: a pure sine wave for PJ(t), and normally distributed random 
numbers for RJ(t). 

In order to assemble the timing budget for a design, we need total jitter as a single number in the 
dimension of time(s). This is usually a peak-to-peak value, that is, the maximum value minus the 
minimum value:  

TJPkPk = max(J(t)) – min(J(t)) 

The total jitter peak-to-peak for the example in Figure 1 turned out to be about 31 ps. But unfortunately, 
this result is not a useful TJPkPk value, because the RJ term describes an unbounded random process. 
This means that the observed min and max values and thus the TJPkPk value get larger as we measure for 
a longer period of time. In the limit, the minimum is minus infinity, and the maximum plus infinity, and 
TJPkPk thus infinity (twice). 

Probability density functions 
The usual way to deal with such a problem is to make use of the fact that the individual terms 
are independent. 

Thus, we can build histograms or calculate the probability density function (PDF) for the individual jitter 
components, and use a convolution operation to calculate the total jitter PDF: 

J(x) = PJ(x) * RJ(x) * DDJ(x) *... 

The TJ peak-to-peak value is then the maximum non-zero probability PDF value minus the minimum non-
zero PDF value. Figure 2 shows the PDFs for the example above; TJPkPk is 31 ps, exactly the same value 
that we got from the time waveform. 

http://www.keysight.com/
http://www.keysight.com


             5 

The PDF has two advantages over the time waveform: first, it can be measured directly on many different 
types of test equipment, for example, sampling oscilloscopes, real-time oscilloscopes, and time interval 
analyzers. Second, the PDF of a Gaussian process is well known. 

Thus, we can calculate the total jitter PDF, if we know the RJ RMS value and the PDFs of all other jitter 
components. The resulting TJ PDF however is still non-zero over the whole definition range, leading to 
the same infinite and thus meaningless TJPkPk reading that we got earlier. However, since we’re dealing 
with probabilities anyway, it’s easier to define the TJPkPk values as a function of some sort of 
probability level. 

 

Figure 2. The total jitter PDF is the convolution of the individual component’s PDFs 

Cumulative probability density functions 
Expressing TJ peak-to-peak as a function of a probability level can be done easily once we construct a 
cumulative probability density function (CDF), by integrating the PDF: 

 

The CDF tells us for each time value the probability that the transition happened earlier. TJ peak-to-peak 
for a probability level of y is then the time value where CDF = 1 – y/2, minus the time value where CDF = 
y/2. Figure 3 shows the TJ CDF for the example above. The TJ peak-to-peak value that includes all but 
1e–3 of the population is 28.51 ps, while TJPkPk for 1e–4 is 30.13. 

One important thing to note from Figure 3 is the fact that we don’t have any CDF values lower than 1e–5. 
This is because the plots were generated using 100,000 random floating-point values on a computer, and 
the lowest possible non-zero PDF and thus CDF value, in this case, is 1e–5. From this observation 
immediately follows that we need at least 2/y samples if we want to directly calculate TJPkPk at probability 
level y from a measured PDF. For example, at the probability level of 1e–12 that is required by many 
standards, at minimum 2e12 samples need to be acquired. 

http://www.keysight.com/
http://www.keysight.com


             6 

 

Figure 3. The total jitter CDF, using a log scale for probability axis 

Total jitter calculation from measured PDFs 
As we’ve shown in the last section, many samples are needed in order to directly calculate the TJPkPk 
value at low probability levels. Unfortunately, all test equipment existing today that can assemble PDFs 
from direct measurements or samples suffers from low sampling rates, and real-time oscilloscopes that 
have high sampling rates need many sampling passes because of memory limitations. At a sampling rate 
of 100 kHz, the acquisition of 2e12 samples takes more than 230 days, so even an improvement in 
sampling rate of a factor of 100 would still make the direct measurement impractical. Because of this 
limitation, TJ readings on oscilloscopes and time interval analyzers are usually extrapolated from a PDF 
that was measured using a much lower number of samples. Many assumptions are made in the 
extrapolations and, while they give estimates of TJ in seconds, the different techniques frequently give 
wildly inconsistent results. When there is no substitute for a genuine measurement without any 
assumptions it’s useful to remember that TJ can only be measured on a BERT. 

 

Bit Error Ratio 
Definition 
The quality of a digital transmission system can be expressed most naturally in terms of how many bits 
out of a transmitted sequence were received in error. This is usually done on a Bit Error Ratio Tester 
(BERT), a piece of test equipment that consists of a reference quality receiver, expected data generation, 
a digital compare mechanism, and counters for received bits and errors. During the test, received bits are 
compared to the respective expected bits; each compares operation increments the number of compared 
bits counter, and the error counter is incremented for every failed compare. 

 

 

http://www.keysight.com/
http://www.keysight.com


             7 

The main result of a test is the bit error ratio (BER), which is defined as 

 

where NErr is the number of errors and NBits the number of bits. This equation is used both for measured 
and actual BER values; the measured value approaches the actual BER in the limit as NBits → ꝏ. 

Bit error ratio measurement as a binomial process 
The bit error ratio measurement is a perfect example of a binomial process: for each bit that is received in 
the BERT’s error detector and compared against the expected data, there are exactly two possible 
outcomes: either the bit was received in error, or not. If we assume that the errors observed during a BER 
measurement are independent of each other, and if the conditions don’t change over time, we can model 
a BER measurement using the binomial distribution: 

 

In most practical cases, we’re dealing with low bit error ratios and high numbers of compared bits. For 
BER < 1e–4 and NBits > 100,000, the Poisson distribution approximates the binomial distribution within 
double precision numerical accuracy. It is considerably easier to evaluate and has only one governing 
parameter µ, which is the average number of errors we expect to observe for a given BER and NBits: 

µ = BER • NBits 

The PDF of a Poisson distribution for a BER measurement experiment is then 

 

where NErr must be an integer, while µ can be any non-negative real number. 

Accuracy of bit error ratio measurements 
Knowledge of the probability density function that describes BER measurements allows us to come up 
with accuracy estimates. As an example, we compare three BER measurements on a system with an 
actual BER of 1e–12, and vary only the number of compared bits: 

• NBits = 1e12 (µ = 1). The probability of getting exactly one error in the test (which is equivalent to 
measuring the exact BER of 1e–12) is 0.3679 

• NBits = 1e13 (µ = 10). The probability of getting 10 errors (BER = 1e–12) is only 0.1215. 
• NBits = 1e14 (µ = 100). The probability of getting 100 errors (BER = 1e–12) is even less, namely 0.0399. 

Does this mean that the results get better if fewer bits are compared? Exactly the contrary is the case. 
Figure 4 shows the discrete PDFs for the µ = 1 and µ = 10 cases. The absolute probability values are 
indeed higher for µ = 1, but only because there are fewer possible outcomes. 

Note how, for µ = 1, the probability of observing zero errors (BER = 0) is exactly the same as for 
observing one error (BER = 1e–12). For µ = 10 however, the probability of no error is almost zero (4.54e–5). 

http://www.keysight.com/
http://www.keysight.com


             8 

Likewise, the probability of observing two errors for µ = 1 (BER = 2e–12, double the actual value) is 
0.1839, but the probability of observing 20 errors in the case of µ = 10 (which is the same bit error ratio) is 
only 0.0019. 

 

Figure 4. Probability density functions for a Poisson distribution with = 1 (left) and = 10 (right) 

If we repeat the same measurement over and over again, the observed NErr values are distributed with a 
standard deviation of √µ. And while this value increases with µ, the spread in terms of BER decreases 
(remember that BER equals µ divided by NErr). In Figure 5, we plotted the PDFs for three values of µ (1, 
10, 100), using the BER value rather than NErr on the x-axis, and normalized the probability values to 
unity. The distribution of the measured bit error ratio gets narrower if we increase µ, which is equivalent to 
increasing the number of compared bits if the actual BER is constant. 

 

 

Figure 5: Normalized probability density functions for Poisson distributions  
with µ = 1, µ = 10, and µ = 100, in terms of bit error ratio rather than NErr 

http://www.keysight.com/
http://www.keysight.com


             9 

So far, we assumed that the actual BER is known, and derived accuracy estimates based on this 
knowledge. In a real-life situation, however, the actual BER is obviously unknown. So how can we get 
accuracy estimates after a measurement, when only NBits and NErr are known? Fortunately, we can simply 
use NErr as an estimator for µ and derive the standard deviation for the measurement from there. 

Confidence levels on bit error ratio measurements  
Quite often, we don’t need to measure the exact BER but can stop the measurement if we are certain that 
the BER is above or below a limit. In the jitter tolerance test, for example, we need to assert that the 
device under test operates with a BER better than for example 1e–12; whether the true BER is 1.1e–13 or 
2.7e–15 is irrelevant. 

Our confidence in such an assertion can be expressed in terms of a confidence level. A confidence level 
sets a limit on the maximum or minimum of the true value of a quantity, based on a measurement. If we 
compare 3.0e12 bits without getting errors, we can say that the BER is below 1e12 at the 95% confidence 
level. This example demonstrates the power of this approach: we measured a BER of zero but using the 
number of compared bits and some sensible assumptions, we can be reasonably sure that the BER is 
lower than 1e–12. How can those confidence levels be derived? 

Let’s make an example: if we compare 5e12 bits and get a single error, how confident can we be that the 
BER is < 1e–12? The measured BER, in this case, is 0.2e–12, which indicates that the BER is indeed lower 
than 1e–12, but the measurement was made with a large uncertainty. Using the Poisson distribution, we 
can calculate the probabilities of observing zero or one error in 5e12 bits, assuming the BER is exactly 
1e12. We evaluate P(0,5) = 0.0067 and P(1,5) = 0.0337, so the probability of observing zero or one error 
in 5e12 bits if the BER is 1e–12 equals 4.04%. Our confidence that the BER is below 1e–12 is then 95.96%, 
and we’ve thus set an upper limit on the bit error ratio. 

Table 1 shows statistics for upper and lower limits on BER at a confidence level of 95%. In order to set an 
upper limit, we need to transmit at least y bits with no more than x errors. In order to set a lower limit, we 
need to detect at least x errors in no more than y transmitted bits. The numbers for the upper limits were 
derived in analogy to the example above, by solving 

 

for μ; the number of bits required for a given confidence level of 95% is then μ divided by the target BER. 
Similarly, the numbers for lower limits can be derived by solving 

 

Unfortunately, a closed solution for these equations doesn’t exist, but they can be solved numerically. A 
detailed description of an alternative method on how to compute confidence levels using a Bayesian 
technique can be found in Figure 4. 

  

http://www.keysight.com/
http://www.keysight.com


             10 

Table 1. Statistics for lower and upper limits on BER of 10–12, on the 95% confidence level. To convert to BER of 1eN, 
just replace the exponent “12” with N. 

95% confidence level lower limits, BER > 10–12 95% confidence level upper limits, BER < 10–12   

Min number of errors Max number of compared bits (x1e12) Max number of errors Min number of compared bits (x1e12) 
1 0.05129 0 2.996 

2 0.3554 1 4.744 

3 0.8117 2 6.296 

4 1.366 3 7.754 

5 1.970 4 9.154 

6 2.613 5 10.51 

7 3.285 6 11.84 

 

Using the upper and lower limits given in Table 1, we can for each measurement check whether the BER 
is below or above 1e–12 at the 95% confidence interval. The minimum and maximum numbers of bits for 
low numbers of errors are shown graphically in Figure 6. Note that there is a wide gap where the BER is 
so close to 1e–12 that we can’t really decide. If we compared 3e12 bits for example and got 2 errors (a 
measured bit error ratio of 0.667e–12), we are in the “undecided” white area on the graph. 

In such a case, we need to transmit more bits until the number of bits either reaches the upper limit 
(4.744e12), or until we see more errors. If the actual BER is very close to 1e–12 however, we are unable to 
put a lower or upper limit on the BER, no matter how many bits we transmit. Whether such a test fails or 
passes entirely depends on the application. 

 

Figure 6. The 95% confidence level boundaries for upper (dark grey) and  
lower (light grey) limits on a BER of 1e–12 

 
 

http://www.keysight.com/
http://www.keysight.com


             11 

Sample point set up on a bit error ratio tester 
Almost every BERT existing today has the ability to set its reference receiver to arbitrary decision 
thresholds and sample delays. Figure 7 shows an eye diagram acquired on a sampling oscilloscope with 
the definitions of the sampling delay offset and threshold. Time values are often shown in unit intervals, 
which is just the reciprocal of the bit rate. For example, at 10 Gbit/s, a unit interval equals 100 ps. By 
definition, the optimum sampling point has a time offset of zero. Modern BERTs are able to find the 
optimum sample delay offset and threshold automatically, and all sample delay offsets are relative to this 
sample point. 

 

Figure 7. Eye diagram measured on a sampling oscilloscope, with BERT  
sampling setup definitions. The nominal or optimum sample point is located  
in the middle of the eye diagram 

Bit error ratio and jitter 
Bit errors can be caused by either logic errors in the transmitter itself, or by amplitude noise and jitter 
seen by the receiver. Unfortunately, amplitude noise is indistinguishable from jitter, which is why all jitter 
measurement analyses assume that amplitude noise is negligible. Same for logic errors, if there is a 
source of not randomly distributed errors in a system, jitter analysis cannot work. 

Jitter, in a standard BER test at the optimum sample point, causes bit errors if the jitter peak-to-peak 
value exceeds 1 UI, so that the BERT receiver “sees” either the previous or the next bit. We can also 
cause error rates by moving the sample point toward the edge of the signal. If the sampling point is 
located exactly at the left edge (at –0.5 UI), only the jitter value and the value of the neighboring bit 
determine whether we see an error or not. The same is true at the right edge. Since we only observe an 
error if the neighboring bit is different from the current one, the BER at this sampling point will be equal to 
half the transition density. 

 

http://www.keysight.com/
http://www.keysight.com


             12 

BERT scan plots 
The total jitter PDF is accumulated over many edge transitions, thus we can in turn place a TJ histogram 
on every edge. The BER vs. sampling delay offset is then the integral over the TJ PDF from the optimum 
sampling point to the left and to the right. Figure 8 shows an example, using the same jitter values that we 
used earlier, however this time with a rectangular PJ rather than a sinusoidal one. Note that the maximum 
BER in this example is 0.5, since we did the simulation for a random data pattern. Since the probability of 
two identical consecutive bits (the transition density) on a random data sequence is one-half, we had to 
scale the CDF integral by 0.5. 

Since the PDF is placed on the edge, BER is usually measured beyond the /–0.5 UI offset; common 
values are ±0.75 UI. Such a curve is commonly termed a “bathtub curve”, because of its 
characteristic shape. 

 

Figure 8. Schematic eye diagram (top), jitter histogram (middle), and BER vs. sampling delay offset (“bathtub curve”, 
bottom) in linear scale (left) and logarithmic scale (right), for a 10 Gbit/s signal with 10 ps PJ and 3 ps RJrms 

Calculating total jitter from bathtub curves 
Since the BERT scan curve is related to the total jitter cumulative probability density function (CDF), we 
can derive TJPkPk values from it. One possibility would be to simply take the right-hand side of the curve, 
and derive the peak-to-peak value from there, just as we did earlier with the CDF from measured 
histograms. But there is a much more intuitive possibility: we calculate the intersection of the left and right 
branch of the BERT scan curve with a BER threshold and get the eye-opening or phase margin at this 

http://www.keysight.com/
http://www.keysight.com


             13 

particular BER level as the difference between the two. Then, the TJPkPk value equals the system period 
minus the phase margin. The beauty of this derivation is that we can immediately relate it to a timing 
budget: the TJ peak-to-peak value is the portion of the unit interval that is not available for sampling if we 
need a BER performance better than the BER threshold used in the calculation. 

Figure 9 shows the bathtub curve for the example above, in logarithmic scale and with a BER level of  
1e–12. The intersections are at ±24.48 ps, so the phase margin is 48.96 ps. With the system period of  
100 ps at 10 Gbit/s, the total jitter peak-to-peak value equals 51.04 ps. 

Obviously, the lower the BER we select for the TJ calculation, the higher the TJ peak-to-peak value will 
be. This is consistent with the results we got from our earlier TJ peak-to-peak calculations where we used 
the measured CDFs. One important difference between the results however is that the BER scan method 
automatically takes the transition density into account: if consecutive bits in a data sequence are identical, 
then jitter will not cause an error, leading to a lower TJ reading. This is a good thing in virtually all 
applications since it is consistent with expectations from a timing budget standpoint. 

Use of bathtub curves beyond total jitter calculation  
Most jitter packages based on oscilloscopes or time interval analyzers available today plot bathtub 
curves, by integrating the extrapolated total jitter PDF. Those bathtub curves cannot possibly capture real 
bit errors; in fact, they will not even detect if you accidentally crossed data and data bar. Quite often, if 
chip timing is marginal, or if a rare digital logic error occurs in a design, bathtub curves can exhibit a BER 
floor, meaning that the BER is not zero in the middle of the eye. This indicates a severe design problem, 
and can only be observed on a BERT. If your BERT has capture memory or capture-around error 
capabilities, you can even debug your design on the digital level, just as you would do with a 
logic analyzer. 

 

Figure 9. BERT scan or bathtub curve in logarithmic scale 

  

http://www.keysight.com/
http://www.keysight.com


             14 

Measuring the Bathtub Curve 
Brute force 
The easiest way to measure a bathtub curve is to sample an identical number of bits at equidistant 
sampling locations. In order to get minimum statistical confidence, we need to measure at least ten times 
the reciprocal target bit error ratio. For example, in order to measure a bathtub curve down to 1e–12 we 
need to compare 1e13 bits at each sampling point. A bathtub curve at 10 Gbit/s with a 1 ps resolution then 
takes 41.67 hours. 

Number of errors optimization 
The accuracy of a bit error ratio measurement increases with the number of errors that we observe. This 
means that we’ve measured the high BER portion of the bathtub, which we don’t actually need for the TJ 
measurement, with high accuracy. One common optimization for bathtub measurements is therefore to 
limit the acquisition to a certain number of errors, in addition to the number of bits. Then, all BER values 
where the number of errors is reached before the number of bits are measured with the same accuracy. 
Figure 10 shows the numbers of compared bits for the same bathtub curve as in Figure 8, using 1e13 
compared bits and a 1 ps delay resolution, for three different settings of the number of errors optimization. 

 

Figure 10. Number of compared bits vs. sample delay, for a 1 ps  
delay resolution at 10 ps DJPkPk and 3 ps RJrms. The lower the  
number of errors setting, the fewer bits need to be compared 

 

http://www.keysight.com/
http://www.keysight.com


             15 

 

Figure 11. Measurement time vs. RJrms, for a 1ps delay resolution and  
three different DJPkPk values. The higher the total jitter, the faster  
the measurement 

The number of error optimizations cuts down measurement time in the area of the bathtub curve where 
error rates are high. This means that the total measurement time depends on how much jitter is present 
on the signal. Figure 11 shows how long a bathtub measurement with 1e13 compared bits and 1000 errors 
will take, as a function of RJrms and for three different values of DJPkPk. Measurement times decrease 
almost linearly with both RJrms and DJPkPk, and approach zero as the TJ goes to 1 UI. 

Note that the durations given are average values, and will vary slightly due to the statistical nature of BER 
measurements. Also, we didn’t include the time required for moving the delay on a BERT and the 
minimum gate time. These numbers are usually very low however (in the millisecond range), so they don’t 
have much influence on measurement times for all practical cases. 

The fast total jitter algorithm 
The major drawback of the number of error optimizations for the purpose of TJ evaluation is that most of 
the measurement time is spent in the middle of the bathtub, where the measured BER is zero. Since we 
take the TJ information from the intersections of the bathtub slopes with a BER threshold, this is 
unnecessary unless we want to verify that there is no (or a very low) BER floor. If we are purely interested 
in the TJ result, it is sufficient to find the sample delay offsets on the left and right slope of the bathtub 
curve where the BER is exactly 1e–12. We call these points xL(1e–12) and xR(1e–12). TJ peak-to-peak is 
then simply the bit interval, minus the difference between xR and xL. Unfortunately, since the BERT has a 
finite delay resolution, it is virtually impossible to set the sampling delay to exactly these points. And even 
if it was possible, we would need to observe an infinite number of bits to prove that the BER is really 
exactly 1e–12. 

 

http://www.keysight.com/
http://www.keysight.com


             16 

Bracketing approach 
Since we are unable to find a single point on the slope where the BER is exactly 1e–12, we relax our 
search goal to an interval that brackets it, in the sense that we are reasonably sure that the point where 
BER is equal to 1e–12 lies within the interval. In Figure 12, we have shown this for the left slope: we 
search for an interval [x–, x+] that brackets the xL point, where x+ and x– are separated by no more than 
the desired delay step accuracy of the TJ measurement, ∆x. 

We don’t need to know the exact BER values at x+ and x–, it is sufficient to assert that BER (x–) > 1e–12 
and BER (x+) < 1e–12 at a desired confidence level. If we choose 95%, we have determined that (1e–12) is 
within the interval [x–, x+] with a confidence level of at worst 90%. For lack of better knowledge, we 
assume that is in the middle of the bracketing interval. Since the distance between x– and x+ is ∆x, xL is 
accurate to ±0.5 ∆x. Repeating the procedure for the right slope of the bathtub curve yields xR with the 
same accuracy, and we can calculate TJ peak-to-peak the same way we did before, with an accuracy of 
±√2∆𝑥𝑥. 

Search strategies 
There are many possible algorithms to search for the interval [x–, x+]. Things to keep in mind during the 
implementation of a fast total jitter measurement using the bracketing approach are: 

• Measurement times increase with decreasing BER, so that the search should be performed from left 
to right for the left edge, and from right to left on the right edge. The main goal of the search 
algorithm is to minimize the number of failed attempts to find x+. At 10 Gbit/s it takes about 5 minutes 
to compare 3e12 bits — the biggest investment in the process 

• Once x– has been determined, x+ is often within ∆x because of the steep slopes of the bathtub curve 
at low BER values 

• The search lends itself well to an iterative process. We continue to refine the search steps until we’ve 
reduced the interval to the desired accuracy. The measurement times can be traded in a well-defined 
way against measurement accuracy 

• In order to get better initial values for the search, it is a good idea to perform a relatively fast 
complete bathtub scan. From the data, we can get reasonable first guesses for x– and x+, either 
directly or by fitting an inverse error function to the data 

• If the device under test has a BER floor, the search can be stuck because the BER never gets below 
1e–12. A robust implementation has to account for this. 

http://www.keysight.com/
http://www.keysight.com


             17 

 

Figure 12. Definitions for the bracketing approach, on the left slope lower BER region 

Example implementation one: linear search 
In this section, we present a simple example implementation of the fast TJ measurement algorithm, using 
a linear search with constant step size. 

1. Choose the desired uncertainty of the TJ measurement, ∂TJ, and determine the delay step 
accuracy required for this: 

 

2. Starting at the optimum sample point, move the BERT analyzer sample delay to –0.75 UI. 

3. Compare data until you observe at least one error, or until the number of compared bits exceeds 
2.996e12. 

4. If you stopped because of an error, check the number of bits compared so far: 

o if Nbits < 0.05129e12, the BER is > 1e–12 at the 95% level, and we set x– to the current delay. 
Increase the sample delay by ∆x, and continue with step 3. 

o else, we are in the “undecided region”. Increase the sample delay by ∆x, and continue with step 
3. If you end up here again, the bathtub either has a BER floor, or the slope of the bathtub is so 
gentle that we are unable to find x– and x+ that satisfy our accuracy requirement. 

5. If you stopped because you reached the 2.996e12 limit without a single error, the BER is lower than 
1e–12 at the 95% confidence level, and we set x+ to the current delay. Calculate xL(1e–12). We are 
done with the left slope, and continue with step 6. 

6. Continue through steps 2 and 5, this time with an initial delay of +0.75, and with decreasing delay. 
This gives the x+ and x– values for the right slope of the bathtub curve. Calculate xR(1e–12). 

7. Calculate TJ, measurement finished. 

 

http://www.keysight.com/
http://www.keysight.com


             18 

Average measurement times for this implementation are given in Figure 13. Note that measurement times 
with the bracketing approach are not strictly repeatable, since at lower BER values the time until the first 
error is observed is randomly distributed. 

We’ve done the simulations using the average time between errors; variations will be averaged out in 
most real measurements. 

For low RJ values, the measurement is complete after about 10 minutes, independent of DJ. Because of 
the very steep slopes in low RJ situations, only one measurement at low BER needs to be done per 
slope. The measurement time is then dominated by the time required to compare 2.996e12 bits 
(5 minutes), once per slope. This is independent of the delay resolution used: the minimum test time at 
10 Gbit/s is always 10 minutes, no matter how coarse the resolution is. 

 

 

Figure 13. Measurement time vs. RJrms, for 1 ps (top) and  
5 ps (bottom) delay resolution and three different DJPkPk values 

 

 

http://www.keysight.com/
http://www.keysight.com


             19 

 

For increasing RJ values, measurement time goes up because more points are located on the slope of 
the bathtub curve. The saw tooth shape in this region is really an indication of the random variability of the 
measurement time: it entirely depends on how many points are located on the slope, and where. The 
lower resolution setting hits fewer points on the slope, so the measurement completes earlier with 
decreasing resolution. 

For high RJ values, test time quickly drops to almost zero, depending on the DJ value. If the total jitter 
exceeds 1 UI, the bathtub is closed, and the algorithm fails because no points with BER < 1e–12 can 
be found. But this is detected fairly quickly, unlike in a conventional bathtub measurement. 

From Figure 13, we get an average measurement time of about 15 to 20 minutes, at 10 Gbit/s and with a 
1 ps delay step resolution. By comparison with Figure 11, we find that the bracketing approach reduces 
measurement times by about a factor of 40 – 100, depending on RJ and DJ values, and a good portion 
of luck. 

Example implementation two: binary search 
Our second example implementation is more sophisticated: a full bathtub curve with a low number of bits 
that completes in a minute is used to get initial estimated as to where the bracket points might be. The 
actual brackets are then found by using binary search, dynamically adjusting the step size until the 
desired accuracy is reached. 

This example is given mostly to show what’s possible; the benefit in terms of measurement time saved 
over the simple implementation depends entirely on the shape of the bathtub curve. 

1. Choose the desired uncertainty of the TJ measurement, ∂TJ, and determine the delay step accuracy 
required for this: 

 

2. Measure a complete bathtub curve with a step size of ∆x, using 1e9 bits and 1e3 errors 

3. Make your first guess for x_: to determine which of the delay settings can be used as your first guess 
for x_ use Table 1. For example, if at the last time- delay setting of the fast bathtub two errors were 
observed, then Table 1 says that for two errors the maximum number of transmitted bits consistent 
with BER > 1e–12 at the 95% confidence level is 0.3554e12; since 1e9 bits were transmitted we have 
BER > 1e–12 with much better than 95% confidence. Define x0 = x and set x_ = x, the first guess for 
the left bracket. 

Once x0 is defined, then data will be acquired at time-delay settings xn = x0 + nx, be prepared to keep 
track of the number of errors detected and bits transmitted at each of these delay settings, (NErr, NBits). 

4. Try to get your first candidate for x+: Extrapolate the left slope of the bathtub down to 1e–12 by fitting 
a complimentary error function in the usual way (this is the standard bathtub plot technique for 
estimating TJ with a BERT). Determine the number of steps, n, from x0 that give xn closest to x’. 
That is, set n to the closest integer to (x’– x0)/ ∆x (things should go a little faster if you err on the 
side of higher BER, that is, round down). Set the time delay to xn = x0 + n∆x. 

http://www.keysight.com/
http://www.keysight.com


             20 

5. With the delay at xn, transmit bits until either an error is received or 2.996 x 1012 bits are transmitted 
without an error. 

6. If an error is detected in step 5: use Table 1 to determine if you have a new lower limit,  
BER > 1e–12. If you have a new lower limit, then set x_ = xn and set n:= n+1 and go back to step 5. 
If you can’t get a new lower limit, then continue to step 7. 

7. Tweener situation: If an error is detected in step 5 but the total number of errors for the number of 
transmitted bits at the delay xn is too small to give the lower limit, BER > 1e–12, then we find 
ourselves in the gap between the shaded regions of Figure 6. This is the annoying “tweener 
situation” that almost never occurs but any decent algorithm must account for it. While annoying, it’s 
not too bad a place to be because xn is probably very close to x(1e–12). Continue to transmit bits 
until you either get another error or have transmitted a total of 3.3e12 bits at xn. If you get an error go 
back to step 6, if you don’t, then you have between one and six errors, 1 ≤ Nerr ≤ 6, at xn and are 
firmly set in the tweener region and xn is the tweener-delay. The idea at this point is to make sure 
that xn is really consistent with x(1e–12). If so, then we’ll use it, if not, we’ll use something like it, but 
flag the result with a larger uncertainty and glean some useful information: 

a) If x_ = xn –1 and x+_ = xn +1, then set xL(10–12) = xn and go to step 9. 

b) If x_ ≠ xn –1, then decrement n: = n –1 and go to step 4. 

c) If x+_ ≠ xn +1 or there is still no candidate for x+, then increment n: = n+1 and go back to  
step 5. 

d) It is extremely unlikely that you’ll end up here, with more than one tweener point. This is the 
most interesting case of all because it tells us that there is a very gentle slope of BER near BER 
= 1e–12. This indicates that something very strange, some low probability recurring deterministic 
event is going on. If you get here, then you really do need to perform the full bathtub curve, 
even if it takes a weekend, to figure out what is going on. 

8. If 3e12 bits were transmitted without an error in step 4, then set x+ = xn. 

9. If x_ is farther from x+ than ∆x, that is, if x+ – x_ > ∆x, then set x = x+– ∆x, i.e., set n = (x+–x0)/ ∆x – 
1, and iterate the process by going back to step 5. But, if x+ – x_≤ ∆x, then continue to step 10. 

10. You’ve finished the left slope: set xL(1e–12) = 1/2 (x+ + x_) and repeat steps 1 through 9 for the right 
slope to obtain xR(1e–12). 

11. Having obtained xL(1e–12) and xR(1e–12), you have TJ(1e–12) with an accuracy of ±√2∆x. 
 

 

 

http://www.keysight.com/
http://www.keysight.com


 

 

 

Keysight enables innovators to push the boundaries of engineering by quickly solving 
design, emulation, and test challenges to create the best product experiences. Start your 
innovation journey at www.keysight.com. 

This information is subject to change without notice. © Keysight Technologies, 2005 – 2023,  
Published in USA, January 31, 2023, 5989-2933EN 

 

Conclusion 
In this paper, we’ve shown that total jitter peak-to-peak can be measured on a bit error ratio tester and 
introduced a new method that allows us to trade test time versus accuracy. 

We provided two different example implementations of our algorithm and showed that an improvement in 
measurement time of more than a factor of 40 compared to a conservative bathtub measurement can be 
achieved. Typical test times are approximately 20 minutes at 10 Gbit/s, and little more than one hour at 
2.5 Gbit/s, for a total jitter measurement that was done at the 1e-12 BER level with a confidence level of 
better than 90%. 

Due to the direct measurement approach, accuracy of the results is independent of the total jitter PDF. 
This is a significant advantage over other methods based on oscilloscopes or time interval analyzers, 
which fail miserably if the jitter distribution doesn’t fit the extrapolation model. 

References 
[1] Ransom Stephens, “Analyzing Jitter at High Data Rates,” IEEE Optical Communications, February 2004. 
 
[2] Ransom Stephens, “The Rules of Jitter Analysis,” Analog Zone, September 2004. 
 
[3] “Precision jitter analysis using the 86100C DCA-J”, Keysight Technologies. 
 
[4] Lee Barford, “Sequential Bayesian Bit Error Rate Measurement”, IEEE Transactions of Instrumentation and Measurement, 

Vol. 53, No. 4, August 2004 

 

http://www.keysight.com/
http://www.keysight.com/
http://www.keysight.com/
https://www.keysight.com/us/en/assets/7018-01221/application-notes/5989-1146.pdf

	Introduction
	Jitter
	Bit Error Ratio
	Measuring the Bathtub Curve
	Conclusion

