D9010LSSP

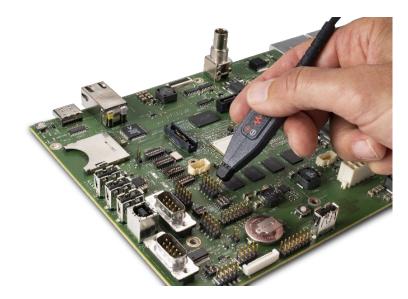
Low-speed serial protocol trigger and decode for Infiniium oscilloscopes

Introduction

The D9010LSSP software package for Infiniium oscilloscopes gives you the ability to trigger and decode on a large and ever-expanding suite of low-speed serial protocols: I2C, SPI, eSPI, Quad SPI, Quad eSPI, RS232/UART, JTAG, I2S, SVID, and Manchester. This package applies to the Keysight EXR, MXR, S, V, and UXR Series Infiniium Oscilloscopes.

Table of Contents

roduct Overview	3
С	4
PI	
uad SPI	
SPI	
S232 / UART	9
TAG	10
S	11
VID	12
lanchester	13
Prdering Information	14


Product Overview

This document is designed to help you understand what is available in D9010LSSP. For assistance in using the software, please reference the latest user's guide, programmer's guides, and online help for Infinitium available on Keysight.com.

Lower-speed serial bus interfaces are widely used today in electronic designs for chip-to-chip communication. In many designs, these serial buses tend to provide content-rich points for debugging and testing. Extend your scope capability with the D9010LSSP low-speed serial protocol triggering and decoding application! This application makes it easy to debug and test designs that include low-speed serial protocols using Infiniium oscilloscopes. Get access to a rich set of integrated protocol-level triggers specific to each serial bus. When serial triggering is selected, the application enables special real-time triggering hardware inside the scope.

Hardware-based triggering ensures that the scope never misses a trigger event when armed. This hardware takes signals acquired using either scope or digital channels and reconstructs protocol frames. It then inspects these protocol frames against specified protocol-level trigger conditions and triggers when the condition is met.

- Easy access to set up with a dedicated Serial Decode front panel key.
- Setup your scope to show protocol decode in less than 30 seconds with an auto-setup key for every protocol that sets threshold levels, baud rates, sample rate, memory depth, and more.
- Save time and eliminate errors by viewing packets at the protocol level on the physical waveform, or in tabular or graphical format.
- Easy-to-use search and navigate tools allow you to search through long sets of data and find specific packets of interest on the serial bus.
- Segmented memory allows you to capture seconds to days' worth of serial protocol traffic. The scope fills memory in segments as each acquisition sees a trigger condition, using time tags to track time between segments.

l²C

D9010LSSP provides a fast and easy way to debug the Inter-Integrated Circuit (I2C) serial communication busses found in a wide variety of embedded designs. It provides protocol-level debug information for Keysight's Infiniium series oscilloscopes. With new, enhanced serial analysis capabilities, D9010LSSP provides not only decode, but also listing window view, software searching, and trigger on search. When serial triggering is selected, the application enables special real-time triggering hardware to ensure that the scope never misses a trigger when armed.

Eile	<u>Control</u> <u>S</u> etup	Display Trigge	r <u>M</u> e	asure,	/Mark M	ath <u>A</u> nalyze <u>L</u>	Itilities Demos Help	
Run	Stop Single	20.0 GSa/s	20.0	kots			500 MHz 1 502	1
-	orm Area 1							• #
Time	1 975 mV/	2.15 V 🛛 🚾 🛙	.00 \	//	1.25 V	🖌 💿 🔶 🕻	» ¤	
) Ne l	-			_				6.05 V
Meas				_				
S								4.10 V
Vertical								3.13 V
tic								2.15 V
a l								
Meas							*************************	
<u>s</u>						,		
0	÷					=50 D=	0 D=4D D=53 D=4F	
						Sta	rt 7-bit Addr	
5	774 µs -574	4 μs -374 μs		-174 μ	IS	26 µs 220	6 μs 426 μs 626 μs 826 μs 1.03 ms 1.23	ms m1
	H 200 µs/	225.5555499 μs	0					
<u>N</u>	200 ps/	225.5555455 μs			3 // 4	J		
Protoc	ol 1 Listing : I ² C							🕽 🗕 🕂 🗙
Packet	s						Details	
Index	Time	I2C Packet	Addr	R/W	Addr Ack	Data	🖶 Generated Fields	<u>^</u>
1	-5.02490735 ms	Start 7-bit Addr	50	Write	Nack		- Packet Length = 45	U U
2	-4.86390735 ms	Restart 7-bit Addr	50	Write	Nack		🖻 7/10-bit Addr	
3	-4.70292735 ms	Restart 7-bit Addr		Write			Physical	
4	-4.54192735 ms				Nack		Addr = 50 Hex	×
5	-4.38092735 ms	Restart 7-bit Addr		Write		06	Payload	* ù
6	-4.07514735 ms					41 47 49 4C 45	0000: 10 4D 53 4F .MSO	
/	10.79265 µs	Start 7-bit Addr	50	Write		10 4D 53 4F		
8	1.76443265 ms 1.92543265 ms	Start 7-bit Addr Restart 7-bit Addr	50		Nack Nack			
9	2.08641265 ms	Restart 7-bit Addr Restart 7-bit Addr			Nack		Header 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7	- 4 - - 4
10	2.24741265 ms	Restart 7-bit Addr			Nack		7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 Addr R A Data D Data	<u>65</u> ^
**	L.L.1/11203 IIIS	Addite 7-bit Addi	30	Inne	HOUN		e0	ШП
							0x50 0 0 0x10 0 0x4D Dat(2:0) D Data D	0
							e 4 Dat[2:0] D Data D	
_							0x3 0 0x4F 0	×
<		III				>	<	>

I²C specifications and characteristics

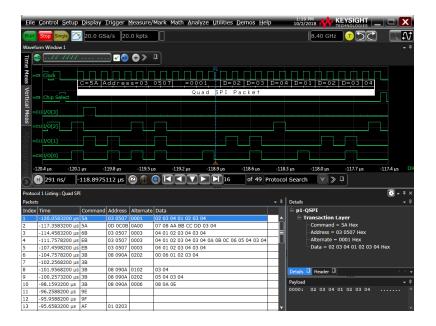
I ² C sources (clock and data)	Any analog channel Any digital channel (MSO only) Any waveform memory
Maximum rate (clock or data)	Up to 3.4 Mbps (automatically set)
Auto setup	Automatically configures trigger levels, decode thresholds, sample rate, memory depth, holdoff, and trigger
Trigger options	 Start and Stop Start and Restart 7-bit Address Start and Restart 8-bit Address Start and Restart 10-bit Address Start and Restart 11-bit Address Specific values for up to three fields: Read or Write Address (Hex or Binary) Acknowledged / Not Acknowledged Data (up to 20 bytes in Hex, Binary, Decimal or ASCII)

SPI

D9010LSSP provides a fast and easy way to debug 2-wire, 3-wire, or 4-wire Serial Peripheral Interface (SPI) serial communication busses found in a wide variety of embedded designs. It provides protocollevel debug information to Keysight's Infiniium series oscilloscopes. With new, enhanced serial analysis capabilities, D9010LSSP provides not only decode, but also listing window view, software searching, and trigger on search. When serial triggering is selected, the application enables special real-time triggering hardware to ensure that the scope never misses a trigger when armed.

51	🚾 Single 🔿	20.0 GSa/s 20.0 I	kpts			4.00 GHz	0.0 V 🗊	50	
eform /	Area 1								
	2.00 V/ -5	90 mV 💿 2.00 V	/ 6.98 V	2.00 V/	7.13 V	🚭 2.00 V/	-2.40 V	20 0 >	Ū.
				-	P1				7.4
		P1 1 1 1 1 1 1		n n		1 11	CI 1		0.0
-		and a second of the	and manual pro-	and print prints	i hered ii	formation from	a prime of	A series present present po	-590
		06 05 F	02 06	41 47 05	FF 05 F	05 F (06 05 F	02 08 4	19
									-8.1
-142	ms -141 m	ns -140 ms	-139 ms -	138 ms -137	ms -136 ms	-135 ms	-134 ms	-133 ms	-132 ms
- (P-			00 00			Loomol La			
					03 00 0	00 0 0			100. 11110
-142	ms -141 m			138 ms -137		-135 ms	-134 ms	-133 ms	
-		ns -140 ms	-139 ms	138 ms -137			-134 ms		-1.0
0	1.00 ms/ -1		-139 ms				-134 ms		-1.1 -132 ms
Col 11	1.00 ms/ -1 Listing : SPI	ns -140 ms 137.2597518823 ms	-139 ms	138 ms -137 > 1			-134 ms		-1.(-132 ms
acol 11	1.00 ms/ -1 Listing : SPI me	ns -140 ms 137.2597518823 ms Data Source (MOSI)	-139 ms	118 ms -117 3 0 serce (MISO)			-134 ms		-1.1 -132 ms
x Tim	1.00 ms/ -1 Listing : SPI na 16.57489229 mg	ns -140 ms 137.2597518823 ms Data Source (MOSI) 5 03 20 00	-119 ms	118 ms -117 3 0 serce (MISO)			-134 ms		-1.1 -132 ms
C 14	1.00 ms/ -1 Listing : SPI ne 16.57489229 me 10.83789229 me	ns -140 ms 137.2597518823 ms Data Source (MOSt) 5 03 20 00 5 06	-139 ms	118 ms -117 3 0 serce (MISO)			-134 ms		-1.1 -132 ms
Col 11 x Tim -14 -14 -14	1.00 ms/ 1 Listing : \$21 ma 16.57489229 ms 10.83789229 ms 10.33282979 ms	-140 ms 137.2597518823 ms Data Source (MOSt) 5 0.1 20 00 5 0.5 05	-139 ms	138 ms -137 ⇒ □ unce (MISO) 1			-134 ms		-1.1 -132 ms
xcol 1 1 x Tim -14 -14 -14 -13	1.00 ms/ -1 Listing : SPI ne 16.57489229 me 10.83789229 me	Juilt Juilt <th< td=""><td>-139 ms</td><td>138 ms -137 ⇒ □ unce (MISO) 1</td><td></td><td></td><td>-134 ms</td><td></td><td>-1.1 -132 ms</td></th<>	-139 ms	138 ms -137 ⇒ □ unce (MISO) 1			-134 ms		-1.1 -132 ms
xcol 11 x Tirr -14 -14 -13 -13	1.00 ms/ -1 Listing : 571 mi 46.57489229 mi 40.33282979 mi 39.50195479 mi	140 ms 137.2597518823 ms Data Source (MOSI) 0 32 000 0 96 0 5 FF 0 05 FF 0 05 FF	-139 ms	138 ms -137 ⇒ □ unce (MISO) 1			-134 ms		-1.1 -132 ms
x Tim -14 -14 -14 -13 -13	1.00 ms/ -1 Listing: SPI 46.57489229 mi 40.83789229 mi 40.33282979 mi 39.50195479 mi 17.51882979 mi	as :140 ms 137.2597518823 ms Data Source (MOSt) 5 03 20 00 5 05 6 05 FF 5 02 06 41 47 6 05 FF 5 05 FF	-339 ms	138 ms -137 ⇒ □ unce (MISO) 1			-134 ms		-1.1 -132 ms
x Tim -14 -14 -14 -13 -13 -13 -13	1.00 ms/ 1 Licing: 57 16.57489229 m 10.83789229 m 10.33282979 m 19.50195479 m 17.51002979 m 36.70857979 m	-140 ms 37.2597516823 ms Data Source (MOSt) 0 5 0 5 0 5 FF 0 55 FF 0 55 FF 0 55 FF	-119 ms	138 ms -137 ⇒ □ unce (MISO) 1			-134 ms		-1.1 -132 ms
Control 1 1 Control 1 Control 1 1 Control 1 Control 1 Control 1 1	1.00 ms/ -1 Listing : 5% ma 46.57489229 ma 40.83789229 ma 40.33282979 ma 40.53282979 ma 40.536872979 ma 45.670857979 ma 45.87789229 ma	140 ms 137.2597518823 ms Data Source (MOSt) 0 3 20 00 5 05 FF 0 05 FF	■139 ms ■	138 ms -137 ⇒ □ unce (MISO) 1			-134 ms		-1.0 -132 ms
x Tim -14 -14 -14 -13 -13 -13 -13 -13 -13	1.00 ms/ -1 Listing : 59 m 46.57489229 md 40.83789229 md 40.33282979 md 95.50195479 md 45.50195479 md 45.50789229 md 55.0779229 md	-140 ms 37.2597516823 ms Data Source (MOSI) 0 20 00 0 5 FF 0 20 61 47 0 5 FF	-339 ms	138 ms -137 ⇒ □ unce (MISO) 1			-134 ms		-1.1 -132 ms

SPI specifications and characteristics


SPI protocols supported	2-wire (data, clock) 3-wire (data, clock, chip select) 4-wire (MOSI, MISO, clock, chip select)
SPI sources (all lines)	Any analog channel Any digital channel (MSO models) Any waveform memory
Maximum rate (clock or data)	Up to 50 Mbps (automatically set)
Auto setup	Automatically configures trigger levels, decode thresholds, sample rate, memory depth, holdoff, and trigger
Decode options	Word size: 4 to 32 bits Bit order: LSB or MSB
Trigger options	Up to 200 bits of data Operators include equals and OR

Quad SPI

Quad-SPI is a serial interface allowing communication on four lines between a host and external Quad-SPI memory. The Quad-SPI protocol supports traditional SPI as well as the dual-SPI mode which allows it to communicate on two lines. Quad-SPI uses up to six lines in quad mode: one line for chip select, one line for clock, and four lines for data in and data out.

Like all other low-speed protocols on Infiniium, you will be able to set specific triggers, decodes, save and export data, run search queries, and view data in the lister. There is also an auto setup and symbolic decoding available.

Quad SPI specifications and characteristics

Quad SPI modes supported	Single Data Rate (SDR) Double Data Date (DDR)
Quad SPI types	Single I/O (with or without hold) Dual I/O (with or without hold) Quad I/O
SPI sources (all lines)	Any analog channel (only when speed is \leq 50 MHz) Any digital channel (MSO only, required for speeds > 50 MHz) Any waveform memory (only when speed is \leq 50 MHz)
Maximum rate (clock or data)	SDR: up to 266 MHz DDR: up to 133 MHz
Auto setup	Automatically configures trigger levels, decode thresholds, sample rate, memory depth, holdoff, and trigger
Decode options	Clock sampling edge: rising or falling Chip select state: active high or active low Hold state: active high or active low Command phase: Single, dual, or quad I/O Address phase: None, single, dual, or quad I/O Address byte size:1, 2, 3 or 4 Alternate byte phase: None, single, dual, or quad I/O Alternate byte size: 1, 2, 3 or 4 Number of dummy cycles: 0 to 31 Bit order: LSB or MSB Symbolic data decode available
Trigger options	Command: 8-bit value Address Alternate Data: up to 27 bytes

eSPI

Enhanced Serial Peripheral Interface (eSPI) is developed by Intel as a successor to its Low Pin Count (LPC) bus. So it can carry out not only legacy SPI data but also Embedded Controller (EC), Baseboard Management Controller (BMC), and Super-I/O. This standard allows designers to use 1-bit, 2-bit, or 4-bit communications at speeds from 20 to 66 MHz to further allow designers to trade off performance and cost. Extend your oscilloscope's capability with Keysight's eSPI triggering and decode application. It makes it easy to debug and test designs that include eSPI protocols using your Infiniium oscilloscope. Quad I/O decode is only available on MSO models.

e <u>C</u> ontrol	Second Disbu									
Stop Sing	90 🔿 20.0	GSa/s 20.	0 kpts					8.40 GHz	1750]
eform Window	1									
🐋 2.00 V/	/ 74.0 m	v 😡 2.00	V/ 6.58 V	/ 👘 2.	00 V/ -3.	78 V 😡	2.00 V/	3.50 V	∀ @ ⊕ ≫	P
	7				-P1	n nim		,,		
				P	=03FD	4			·····	
PUT	o		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ORD_SHO		·····			GET -3.7
FOT									ور المراجع	GET
m4[]	W A		111.11.11.7	++		W	A	20.000		
	JaLA I	ACCI			<u>Å</u>	Iol A	I	ACCEPT		
84.5 µs	86.0 µs	87.5 µs	89.0 µs	90.5 µs	92.0 µs	93.5 µs	95.0 µs	96.5 µs	98.0 µs	99.5 µs
										8.0
The second second										74
	ff.csccccccccccc					000000000000000000000000000000000000000	******			74
									ANNANANANA A	
				NININI N						
m1[] m2[] 84.5 μs	86.0 µs	87.5 µs	89.0 µs	90.5 µs	92.0 µs	93.5 µs	95.0 µs	96.5 µs	98.0 µs	
				<u> </u>	92.0 µs	93.5 µs	95.0 µs	96.5 µs	98.0 µs	
Η 1.50 μ	is/ 92.046	87.5 μs 9553 μs		<u> </u>	92.0 µs	93.5 µs	95.0 μs	96.5 μs	98.0 µs	-7.9 99.5 μs
	is/ 92.046			<u> </u>	92.0 μs	93.5 µs	95.0 µs	96.5 μs	98.0 µs	
Η 1.50 μ	is/ 92.046			<u> </u>	92.0 µs	93.5 μs	95.0 µs	96.5 µs	98.0 µз	-7.9 99.5 μs
Η 1.50 μ	eSPI	9553 µs 🛛 🖉		₽ 	→ ┦ Details	erated Field	s	96.5 µs	98.0 µs	-7.9 99.5 μs
H 1.50 µ	eSPI Memo	9553 µs 🛛 🖉	ı ≪ © ∬ (SPI Packet Ta	→ ┦ Details		s	96.5 µs	98.0 µs	-7.9 99.5 μs
H 1.50 µ accol 1 Listing : (ets ex Time	eSPI Memo 151 µs	9553 µs 🛛 🖉	et Memory 4: e	SPI Packet Ta	→ A Details	erated Fields Packet Length PI	5 - 32	96.5 µs	98.0 µs	-7.9 99.5 μs
H 1.50 µ cool 1 Listing : (ets ets 77.303361	eSPI Μemo 151 μs 276 μs	9553 µs 🛛 🖉	et Memory 4: e WAIT_STATE ACCEPT	SPI Packet Ta	→ A Details	erated Fields Packet Length PT Fransaction L	5 - 32 ayer			-7.9 99.5 μs
H 1.50 μ ocol 1 Listing : ets ex Time 77.303361 78.103142	eSPI Μemo 151 μs 276 μs 651 μs PUT_I	9553 µs	et Memory 4: e WAIT_STATE ACCEPT	SPI Packet Ta	→ A Details	erated Fields Packet Length PT Fransaction L	5 - 32 ayer	96.5 μs 9.5HORT (1 by		-7.9 99.5 μs
H 1.50 μ bcol 1 Listing : (ets x Time 77.303361 78.103142 82.197486	A SPI A	9553 µs	et Memory 4: e WAIT_STATE ACCEPT	SPI Packet Ta	→ A Details	erated Fields Packet Length PT Fransaction L	s = 32 ayer e = PUT_IORE			-7.9 99.5 μs
H 1.50 μ col 1 Listing : e ets xx Time 77.303361 78.103142 82.197466 85.604924 86.404330	All	9553 µs	et Memory 4: e: WAIT_STATE ACCEPT) WAIT_STATE ACCEPT	SPI Packet Ta	→ A Details	erated Field Jacket Length T Fransaction L CMD Opcod	s = 32 ayer e = PUT_IORE			-7.9 99.5 μs
H 1.50 μ bool 1 Listing : α ets x Time 77.303361 78.103142 82.197466 85.604924 86.404330	All	9553 µs	et Memory 4: e: WAIT_STATE ACCEPT) WAIT_STATE ACCEPT	SPI Packet Ta	Details Details Ger C Header	erated Field Jacket Length T Fransaction L CMD Opcod	s = 32 ayer e = PUT_IORE			
H 1.50 μ col 1 Listing : e ets xx Time 77.303361 78.103142 82.197486 85.604924 86.404330 90.496955	A Constant Service Ser	9553 µs	et Memory 4: et WAIT_STATE ACCEPT WAIT_STATE ACCEPT	SPI Packet Ta	P Details Ger A B eSF C B	erated Field Jacket Length T Fransaction L CMD Opcod	s = 32 ayer e = PUT_IORE			-7.9 99.5 μs
Η 1.50 μ bcol 1 Listing : ets ets ets 77.303361 78.103142 82.197486 85.604924 86.404330 90.496955 93.904892 93.904892	s/ 92.046 eSPI Memory 151 µs 22.046 2551 µs PUT_1 226 µs 526 µs 526 µs PUT_1 276 µs 526 µs 526 µs PUT_1 276 µs 526 µs 526 µs PUT_1 276 µs 5026 µs 5026 µs 5026 µs	9553 µs	et Memory 4: et WAIT_STATE ACCEPT WAIT_STATE ACCEPT WAIT_STATE ACCEPT	SPI Packet Ta		erated Field Jacket Length T Fransaction L CMD Opcod	s = 32 ayer e = PUT_IORE 13FD Hex	D_SHORT (1 by		-7.9 99.5 μs
Η 1.50 μ bcol 1 Listing : ets ets ets 77.303361 78.103142 82.197486 85.604924 86.404330 90.496955 93.904892 94.704080	92.046 eSPI Memo 151 µs 276 µs 551 µs 101 µs 526 µs 526 µs 151 µs 276 µs 226 µs 151 µs 152 µs 151 µs 151 µs 151 µs 151 µs 151 µs 151 µs 151 µs 151 µs 152 µs 152 µs 151 µs 151 µs 151 µs 151 µs 152 µs 151	9553 µs	et Memory 4: et WAIT_STATE ACCEPT WAIT_STATE ACCEPT WAIT_STATE ACCEPT	SPI Packet Ta	Details Details Ger C Header	rerated Fields Packet Length T CMD Opcode Address = 0 7 6 5 4 2 CMD Op	5 = 32 ayer e = PUT_IORC 03FD Hex 03FD Hex 03F0 Hex	D_SHORT (1 by)	te)	-7.9 99.5 μs
Η 1.50 μ ocol 1 Listing : cts ax Time 77.30336 78.103142 82.197486 85.604924 86.404333 90.496955 93.904892 94.704080 98.796611 102.20623	92.046 eSPI Memor 151 µs 276 µs 551 µs PUT_I 276 µs 526 µs 526 µs 526 µs 526 µs 151 µs GET_(3651 µs	9553 µs	et Memory 4: ee WAIT_STATE ACCEPT) WAIT_STATE ACCEPT N ACCEPT	SPI Packet Ta		erated Field Packet Length I rransaction L CMD Opcod Address = C	5 = 32 ayer e = PUT_IORC 03FD Hex 03FD Hex 03F0 Hex	D_SHORT (1 by 	te)	-7.9 99.5 μs

eSPI specifications and characteristics

eSPI modes supported	Single mode (clock, CS, MOSI, MISO, Alert) Dual mode (clock, CS, I/O[0], I/O[1], Alert) Quad mode (clock, CS, I/O[0], I/O[1], I/O[2], I/O[3], Alert)
eSPI sources (all lines)	Any analog channel (except Alert) Any digital channel (MSO only) Any waveform memory (except Alert)
Maximum rate (clock or data)	Up to 66 Mbps (automatic)
Auto setup	Automatically configures trigger levels, decode thresholds, sample rate, memory depth, holdoff, and trigger
Decode options	Response delay: 0 to 28 ns
Trigger options	Channel independent commands and responses Peripheral channel posted and completion commands Peripheral channel non-posted commands Peripheral channel completion responses Virtual wire channel commands and responses OOB message channel commands Flash access channel commands and responses Response status register
	Alert events, errors

RS232 / UART

D9010LSSP includes a suite of configurable protocol-level trigger conditions specific to RS-232 and other UART interfaces. When serial triggering is selected, the application enables special real-time triggering hardware to ensure that the scope never misses a trigger when armed.

The protocol viewer includes correlation between the waveforms and the selected packet, enabling you to quickly move between the physical and protocol layer information using the time-correlated tracking marker.

RS232 / UART specifications and characteristics

UART protocols supported	RS-232 RS-422 (up to 10 Mbps) RS-485 (up to 10 Mbps) Other UART interfaces that admit to the decode parameters in the application (see below) For Infiniium high performance oscilloscope, high impedance adapters are required.
UART sources (Tx and Rx)	Any analog channel Any digital channel (MSO only) Any waveform memory
Maximum baud rate	1.2 kbps to 15 Mbps (manual)
Auto setup	Automatically configures trigger levels, decode thresholds, sample rate, memory depth, holdoff, and trigger
Decode options	Word size: 5 to 9 bits Parity: odd or even Idle polarity: low or high Bit order: MSB or LSB End of frame word: Hex, binary, decimal, or ASCII
Trigger options	Data: Rx or Tx, up to 27 bytes Parity error

JTAG

While oscilloscopes have long been used to debug JTAG (IEEE 1149.1) signal integrity issues, Keysight's Infiniium Series is the first oscilloscope family to support JTAG protocol decode. While the need to decode JTAG may be infrequent, the difficult process of manually decoding JTAG TAP controller states, including instruction and data register values, is time-consuming and error-prone. D9010LSSP provides real-time, at-speed, JTAG decode from TMS, TDI, TDO, and TCK signals acquired on either scope or digital (MSO) channels. This application imports device names and opcodes from industry-standard BSDL files, displays JTAG protocol in real-time, and flags certain types of error conditions. Signals must be probed at the periphery of the scan chain and cannot be probed in the middle of the scan chain.

The multi-tab protocol viewer includes search capabilities and correlation between the waveforms and the selected packet, enabling you to quickly move between the physical and protocol layer information using the time-correlated tracking marker.

Eile	Control Se	tup <u>D</u> isplay <u>T</u> rigger <u>M</u>	easure/Mar	k M	ath A	nalyze <u>U</u>	tilities <u>D</u> emo:	s <u>H</u> elp	1:17 PI 10/2/20	8 🔥 Ķ	EYSIGHT		
Run	Stop Single	20.0 GSa/s 20.0) kpts	エ						2.00 GHz		P	ا ئ
		20.0 000/3 20.0		_	_				[2.00 0112			¥ V
Waveto	orm Area 1							X					→ #
/	∽ ≣∣	1.00 V/ 422 mV	⁻	V/	67	'7 mV	─3 1.00 V/	-27.2 m	v 🔂 📾 🔟	00 V/	637 mV	√ 🕺	
	Time Meas	₽≫ ₽											
~	eas	Annual States	-		4		P1						4.42 V
-	و Vertical Meas کام ل				white-		des		<u></u>		144		
	l - l ≥ l "	¥ 55 T	LŔRI	5	sc	Data[0]=FF	Data[[]=FF	Data	[2]=90	TR	
	⊔ ≜	SS Re	set Idl	S	SC		S 🔬	Shift-IR	N TDI			EUI	
Г		-759 ns 241 ns	1.24 µs	2.24	JS	3.24 µs	4.24 µs	5.24 µs	6.24 µs	7.24 µs	8.24 µs	9.24	lµs m1
						herefet	<u>1</u>	44444	1	6 f			
1/←												111	
	- 28			++++	0th					17 Lana 18 P		*****	
	<u>-</u> ≤ "					Dața[0]=A0	Data[]	1]=80	Data	[2]=AC		
Г	r 🔤						<u> </u>	Shift-IF	R TDO			U	
	126	-759 ns 241 ns	1.24 µs	2.24	JS	3.24 µs	4.24 µs	5.24 µs	6.24 µs	7.24 µs	8.24 µs	9.24	us m4
		H 1.00 µs/ 4.24084	21 µs 🛛 🖉			> □							
						<u> </u>							
	ol 1 Listing : JTA	G (TEEE 1149.1)										6	🖸 🗕 🕂 ×
Packets							P Details	ated Fields					÷ #
Index		TAP State	Opcode/Reg	Len 22	Data			ket Length = 1	5 C				
9	2.703667 µs 2.703667 µs			22	A0 80				50				
	8.745667 us			22	AU 80	AC	□						
		Update-IR TDI XC3S500E	IDCODE	6				State = Shift-	IR TDI				
		Update-IR TDI XCF04S	BYPASS	8				Len = 22 Deci					
13		Update-IR TDI xc2c64a	BYPASS	8				Data = FF FF 9					
		Update-IR TDO XC3S500E	110101	6									
		Update-IR TDO XCF04S	00000001	8			Payload						n
		Update-IR TDO xc2c64a	00000101	8				FF FF 90					÷ 4
	9.079667 us			-			00001	90					
18	9.641667 us												
	9 807667 us						×						

JTAG specifications and characteristics

JTAG sources	Any analog channel Any digital channel (MSO only) Any waveform memory
Maximum baud rate	Any (up to the bandwidth of scope)
Auto setup	Automatically configures trigger levels, decode thresholds, sample rate, memory depth, holdoff, and trigger
Decode options	Load device BSDL file Custom device name and IR length
Trigger options	HW-based: typically an edge trigger on the TMS signal channel SW-based: search on idle, reset, select, capture, shift, shift/pause, exit1, exit2, update-IR TDI/TDO device, update-DR TDI/TDO device, update, errors

l²S

I²S (Inter-IC Sound or Integrated Interchip Sound) is an electrical serial bus interface standard used for connecting digital audio devices. From automobiles to cell phones, the I²S bus is prevalent in a breadth of different industries. Traditional methods of debugging serial buses, such as I²S, include the visual technique of manual bit counting. This method is not only tedious but is also prone to critical errors and inaccuracies compared to using professional software.

Extend your Infiniium oscilloscope's capability with Keysight's I²S protocol triggering and decode option. This protocol software has powerful triggering as well as unique software-accelerated decoding to help you precisely debug audio designs with the I²S bus. With support for several user-selectable signal alignment selections, including Time Division Multiplex (TDM), you will easily find and decode errors and signal integrity problems with confidence.

Tue i	Control Se	cup Display	Ingger	measure/	mark maun	Analyze Q	tilities Demo	os Heip	10/2/20	18 7 7	EYSIGHT	<u>_ IUIX</u>
Run	Stop Single	20.0 0	65a/s 20	0.0 kpts			\rightarrow			4.00 GHz	1000)
Wavefor	rm Window 1											-
,	< I	🐽 1.00 V/	990 m	۱۷ 💿	2.00 V/	4.58 V	3 2.00 V/	-2.59 V	-	⊕ ≫ ⊓		
		Data 125 P		79 – 78 Packe	L=-94		P1	عممهمه والم	+127 acket	L=-1 R I2S Pac		101
 1/←	Ĵ.	-5.00 µs	4.00 µs	-3.00 µs	-2.00 µs	-1.00 µs	0.0 s	1.00 µs	2.00 µs	3.00 µs	4.00 µs	5.00 µs n
j,	Meas											
	suren											
	1er						*					
1	ients	-5.00 µs	4.00 µs	-3.00 µs	-2.00 µs	-1.00 µs	0.0 s	1.00 µs	2.00 µs	3.00 µs	4.00 µs	-10.6 \ 5.00 µs m
	/ / / /	-5.00 μs Η 1.00 μs/		-3.00 µs		-1.00 µs	0.0 s	1.00 µs	2.00 µs	3.00 µs	4.00 µs	
_	/ / / /	H 1.00 µs/		-3.00 µs			0.0 s	1.00 µs	2.00 µs	3.00 µs	4.00 µs	
Protocol Packets	11 Listing : I ^a S	H 1.00 µs/	0.0 s) » ¤	Details	d Fields	2.00 µs	3.00 µs	4.00 µs	5.00 µs n
Protocol Packets Index 7 96	1 Listing : I ² S Time -10.28963 µ	H 1.00 µs/	0.0 s) » ¤	Details Generate – Packet		2.00 µs	3.00 µs	4.00 µs	5.00 µs n
Protocol Packets Index 96 97	4 1 Listing : I ² S Time -10.28963 μs	Left Channe s -128 +127	0.0 s Right Cha -127 +127) » ¤	Details Generate Packet P1-12S	d Fields Length = 16	2.00 µs	3.00 µs	4.00 μs	5.00 µs n
Protocol Packets Index 96 97 98	11 Listing : I ² S Time -10.28963 μs -7.08963 μs	Left Channe s -128 +127 +0	0.0 s 1 Right Cha -127 +127 +0) » ¤	Details Generate Packet P1-12S Physic	d Fields Length = 16			4.00 μs	5.00 µs n
Protocol Packets Index 96 97 98 98 99	11 Listing : I ² S Time -10.28963 µs -8.68963 µs -7.08963 µs -5.48963 µs	H 1.00 µs/	0.0 s 1 Right Cha -127 +127 +0 -46) » ¤	Details Generate Packet p1-12S Physic Left	d Fields Length = 16 z al : Channel = -5	57 Signed De	ıcimal	4.00 μs	5.00 µs r
Protocol Packets Index 96 - 97 - 98 - 99 - 100 -	1 Listing : I ² S Time -10.28963 µs -8.68963 µs -7.08963 µs -5.48963 µs -3.88963 µs	H 1.00 μs/ Left Channe s -128 +127 +0 -46 -79	0.0 s 1 Right Cha -127 +127 +0 -46 -78) » ¤	Details Generate Packet p1-12S Physic Left	d Fields Length = 16	57 Signed De	ıcimal	4.00 μs	5.00 µs r
Protocol Packets Index 96 - 97 - 98 - 99 - 99 - 100 -	11 Listing : I ² S Time -10.28963 µs -8.68963 µs -7.08963 µs -5.48963 µs	H 1.00 μs/ Left Channe s -128 +127 +0 -46 -79	0.0 s 1 Right Cha -127 +127 +0 -46) » ¤	Details Generate Packet p1-12S Physic Left	d Fields Length = 16 z al : Channel = -5	57 Signed De	ıcimal	4.00 µs	5.00 µs r

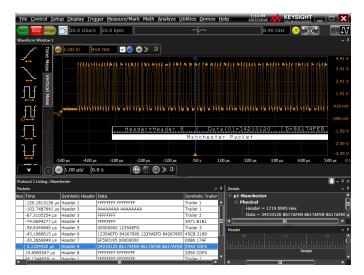
I ² S alignments supported	Standard I ² S Left and right justified TDM	
UART sources (Tx and Rx)	Any analog channel Any digital channel (MSO only) Any waveform memory	
Maximum baud rate	Any (automatic)	
Auto setup	Automatically configures trigger levels, decode thresholds, sample rate, memory depth, holdoff, and trigger	
Decode options	Transmitter / receiver word size: 4 to 64 bits Word select / frame sync edge direction: rising or falling Clock edge direction: rising or falling Bit order: MSB or LSB Display base: hex, signed decimal, binary	
Trigger options	I ² S packets: equal to, not equal to, less than, greater than, within range, out of range, increasing, decreasing	

SVID

This application includes a suite of configurable protocol-level trigger conditions specific to SVID. When serial triggering is selected, the application enables special real-time triggering hardware to ensure that the scope never misses a trigger when armed.

The multi-tab protocol viewer includes correlation between the waveforms and the selected packet, enabling you to quickly move between the physical and protocol layer information using the time-correlated tracking marker.

SVID specifications and characteristics


SVID modes supported	VR12.0	
	VR12.5	
	VR13	
	VR14	
SVID sources	Any analog channel	
	Any digital channel (MSO only)	
	Any waveform memory	
Maximum baud rate	Any (automatic)	
Auto setup	Automatically configures trigger levels, decode thresholds, sample rate, memory depth, holdoff, and trigger	
Decode options	All fields, including extended frame format	
Trigger options	Packet types: set, get, set rejected, get rejected, errors Fields: start pattern, address, command, payload, C-parity, end pattern, acknowledge, filler, x-alert	

Manchester

Manchester coding (also known as phase encoding, or PE), is one of the most prevalent physical layer encodings used in serial bus protocols. Often, Manchester-encoded bus protocols are customized, uncommon, or proprietary, and are therefore not supported by protocol decode software. Keysight Technologies offers a generic Manchester decoder for troubleshooting and analyzing the physical layer of any Manchester signal. Experience flexibility like never before with Infiniium Oscilloscopes.

Keysight Technologies' serial bus applications for Infiniium oscilloscopes not only offer powerful triggering but also provide unique software-accelerated decoding to help you accurately debug Manchester encoded signals. View the signal with ease through triggering on Start of Frame, Header and Data Value, Data Value, or Manchester Error. Customize the results through a variety of parameter input options. Set up a decode in under a minute and easily view the results in a convenient lister format.

Manchester specifications and characteristics

Manchester sources	Any analog channel Any digital channel (MSO only) Any waveform memory	
Maximum baud rate	2 kbps to 10 Gbps	
Auto setup	Automatically configures trigger levels, decode thresholds, sample rate, memory depth, holdoff, and trigger	
Decode options	Tolerance: 5-30% (minimum depends on data rate) Polarity: rising = 1 or falling = 1 Word size: 1 to 32 bits Bit order: MSB or LSB Idle bits: 1.25 to 32 bits Start edge: 1 to 256 Sync size: 0 to 255 Header size: 0 to 32 bits Trailer size: 0 to 32 bits Symbolic data decode available	
Trigger options	Manchester packet: header and data Manchester error	

Ordering Information

Compatibility

Required hardware

Model

D9010LSSP Infiniium 9000, S-Series, EXR-Series, MXR-Series, 90000, V-Series, Z-Series, UXR-Series

Flexible software licenses and KeysightCare Software Support Subscriptions

Keysight offers a variety of flexible licensing options to fit your needs and budget. Choose your license term and license type.

License terms

Perpetual – Perpetual licenses can be used indefinitely.

Subscription – Subscription licenses can be used through the term of the license only.

License types

Node-locked - License can be used on one specified instrument/computer.

Transportable – License can be used on one instrument/computer at a time but may be transferred to another using Keysight Software Manager (internet connection required).

USB Portable – License can be used on one instrument/computer at a time but may be transferred to another using a certified USB dongle (available for additional purchase with Keysight part number SW1000-D10).

Floating (single site) – Networked instruments/computers can access a license from a server one at a time. Multiple licenses can be purchased for concurrent usage.

KeysightCare Software Support Subscriptions

Perpetual licenses are sold with a 12 (default) and up to 60-month software support subscription with a user-selected start and end date. Support subscriptions can be renewed for a fee after that.

Subscription licenses include a software support subscription through the term of the license, from 3 to 36 months, with a user-selected start date.

Selecting your license

Step 1. Choose your software product (e.g. D9020ASIA)

- Step 2. Choose your license term: perpetual or subscription.
- Step 3. Choose your license type: node-locked, transportable, USB portable, or floating.
- Step 4. Depending on the license term, choose your support subscription duration.

Example

If you selected:	Your quote will look like this:	
D9020ASIA	Part number	Description
Node-locked	D9020ASIA	Advanced Signal Integrity Software (EQ, InfiniiSimAdv, Crosstalk)
Demotorel Berner	014/4 000 1 10 04	Node-locked perpetual license
Perpetual license	SW1000-LIC-01 SW1000-SUP-01	Node-locked KeysightCare software support subscription with user-selected start and end dates
D9020ASIA	Part number	Description
Transportable	D9020ASIA	Advanced Signal Integrity Software (EQ, InfiniiSimAdv, Crosstalk)
Subscription 6-		6-months, transportable subscription license
month license	SW1000-SUB-01	

To configure your product and request a quote:

http://www.keysight.com/find/software

Contact your Keysight representative or authorized partner for more information or to place an order:

www.keysight.com/find/contactus

Keysight enables innovators to push the boundaries of engineering by quickly solving design, emulation, and test challenges to create the best product experiences. Start your innovation journey at www.keysight.com.

This information is subject to change without notice. © Keysight Technologies, 2018 – 2023, Published in USA, October 6, 2023, 5992-3369EN