Webinar: Hollow-Core Fiber Testing

Thank you for joining us. We will begin shortly

NOTE: This presentation includes Q&A. We will be taking questions during the presentation with answers at the end using the questions section of your control panel.

Agenda

- Welcome and Introductions
 - Lindsay Welch, TRS-RenTelco Marketing Manger
- TRS-RenTelco: Test & Measurement Solutions
 - Micah Hurd, Product Manager
- VIAVI: Hollow-Core Fiber Testing
 - Mario Simard, Product Line Manager
- TRS-RenTelco: Equipment & Special Promotions
 - Micah Hurd, Product Manager
- Q&A Joint TRS and VIAVI

We provide comprehensive Test & Measurement solutions delivering equipment-as-a-service.

Plan, acquire, and efficiently utilize instruments to maximize return on investment.

- End-to-end fulfillment from our Dallas, TX headquarters
- 5,000+ configurable models available, valued at over \$500MM
- In-House Financing and flexible procurement programs to Rent, Lease, or Buy
- State-of-the-Art 20,000 sq ft Calibration Lab on site
- Same-Day-Shipping with Next Day Delivery

Why Do Customers Choose TRS-RenTelco?

Customer Service Excellence

Talk with a **Live Person** when you call

Extended Technical Sales Hours from 7am – 7pm CT

Late-Order processing

Comprehensive Solutions

Customized In-house Financing

Deep and wide **Inventory**

Equipment ships Ready To Use

Fulfillment Accuracy & Speed

Same-day Shipping

80% of CalibrationsPerformed In-house

99.72% Customer-Scored Equipment Quality Ranking

Reliable Expertise

Strategic singular focus on the rental market

Top-tier rental partner to all major manufacturers

Financially Secure publicly traded company

Hollow-Core Fiber Testing

Mario Simard PLM 2025-10-09

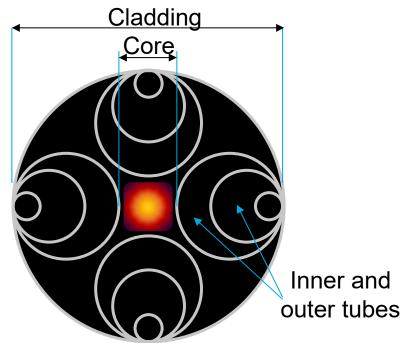
Agenda

Understanding Hollow Core Fiber

Deployment & Certification Challenges

Hollow Core Fiber OTDR Measurements

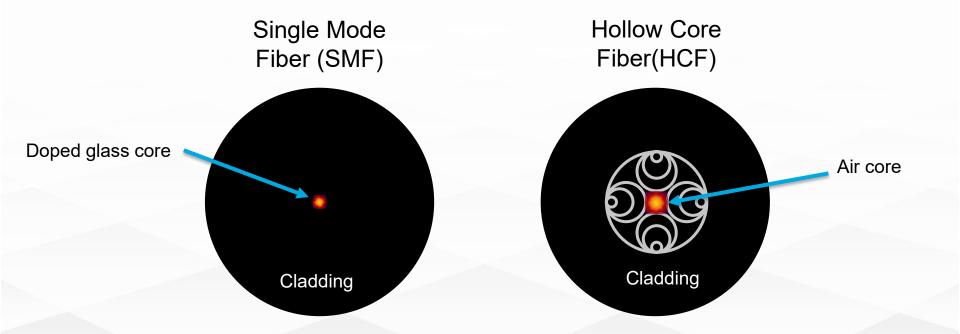
Hollow Core Fiber Dispersion Measurements


VIAVI//Public

Hollow Core Fiber Testing Solutions

Understanding Hollow-Core Fiber (HCF)

Hollow-Core Fiber Structure


Ex: 4T-DNANF
Fourfold truncated double-nested antiresonant

- Core: central air-filled region where light is guided (ex: 14/15 μm)
- Cladding: solid glass that encloses the entire structure including the nested tubes
- Inner and outer antiresonant tubes:
 thin-walled glass tubes that confine light in the air-core

Note: This is an example only. There is no standard design, although the three main components mentioned above are generally consistent: size, dimensions, and the number of tubes may vary.

Hollow-Core Fiber

HCF vs SMF

Hollow Core Fiber Benefits

- ► Lower Latency, 30% less
 - Light travels faster in air: ~3.33 μs/km vs. 4.9 μs/km in single-mode fiber (SMF).
- ► Reduced Chromatic Dispersion (CD), 70% less
 - ~5 ps/nm/km vs. ~17 ps/nm/km in SMF.
- ► Similar Polarization Mode Dispersion (PMD)
 - <0.1 ps/√km vs. 0.1 ps/√km in SMF.
- Minimal Nonlinear Effects
 - Air core minimizes light-material interaction.
- Lower Attenuation at Specific Wavelengths
 - Down to 0.076 dB/km (83 km), better than SMF (~0.2 dB/km).
- High Optical Power Handling
 - Air core allows higher damage threshold.

Lower latency and higher bandwidth

Hollow Core Fiber Applications

Al & High-Performance Computing

Al model training, synchronization, and real-time inference.

▶ Quantum Communication

 Maintains light coherence for quantum key distribution and ultrasecure networks.

Remote Data Centers

 Allows DCs to be located 60–90 km away from urban centers, reducing costs, energy use, and environmental impact.

Defense & Secure Communications

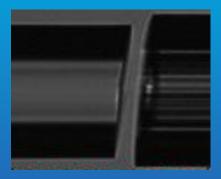
Air-guided structure makes HCF resistant to tapping

► Smart Cities, Edge Computing and 5G/6G Infrastructure

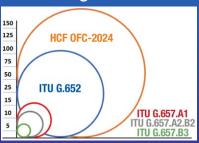
 Enables fast, highly reliable and responsive network for IoT, autonomous systems, and real-time data processing close to the edge.

Financial Services

Ideal for high-frequency trading and low-latency transaction networks.


Hollow Core Fiber Manufacturers

- Lightera
- **▶** Linefiber Technology
- Microsoft (Lumenisity)
- Relativity Networks
- **▶** YOFC
- And others



Hollow Core Fiber Challenges

SMF to HCF

Bending radius HCF

Hollow-Core Fiber

Performance and installation challenges

Current infrastructure compatibility

- Current systems are not designed to directly support HCF
- SMF at both ends of the HCF link
- SMF-to-HCF adapters/transitions introduce loss and reflection

Physical constraints

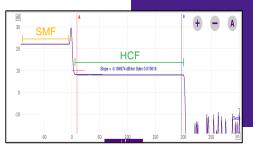
- HCF is 10× more sensitive to bending than SMF
- More delicate handling, especially during splicing

Operational limitations

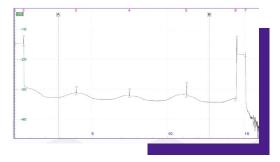
- No standardized Method of Procedure (MoP)
- Few trained professionals and limited tech. expertise
- Post-processing « currently » required

VIAVI//Public

Hollow-Core Fiber


Fiber certification challenges

- Rayleigh backscattering (RBS) signal is ~ 30 dB lower → Impact on OTDR dynamic range at short pulse width
- Variable backscattering coefficient along the fiber → nonstandard OTDR trace profile
- HCF-to-HCF splices are harder to evaluate → Require bidirectional measurement and a specialized analysis SW


Example for 90 km HFC

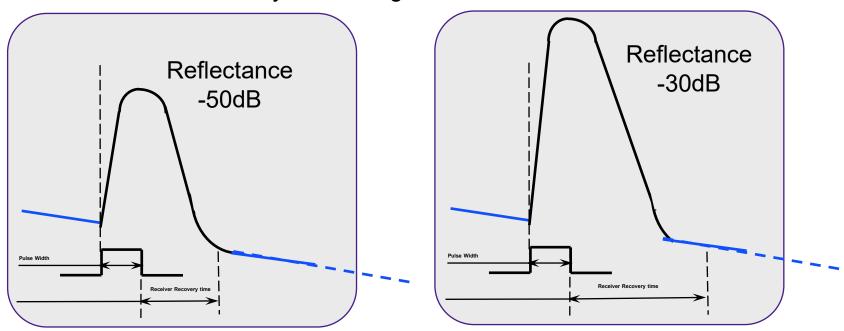
	OTDR	CD/PMD/AP
Total fiber loss (90kmx0.1dB/km)	9	9
Total splice loss (15x0.2dB)	3	3
Total loss SMF to HCF adapter (2x0.3dB)	0.6	0.6
Signal to noise ratio (dB)	6	N/A
SMF-HCF RBS diff. (dB)	15	N/A
Total required dynamic range (dB)	33.6*	12.6

VIAVI//Public

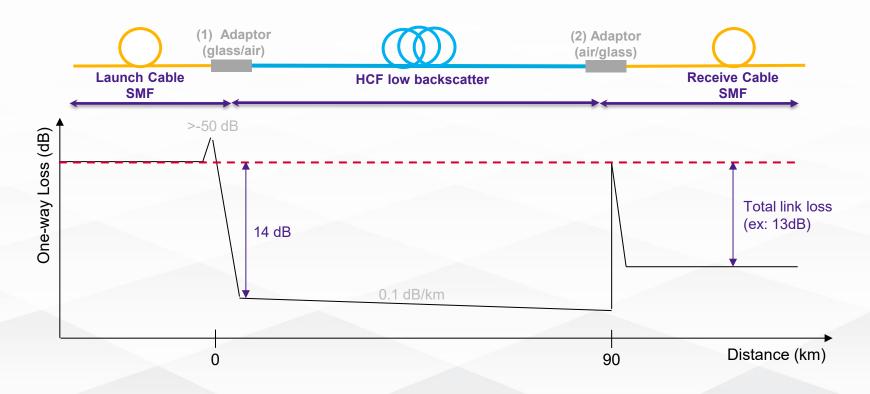
SMF to HCF - OTDR View

Spliced HCF link- OTDR View

^{*} At the shortest possible pulse width


15

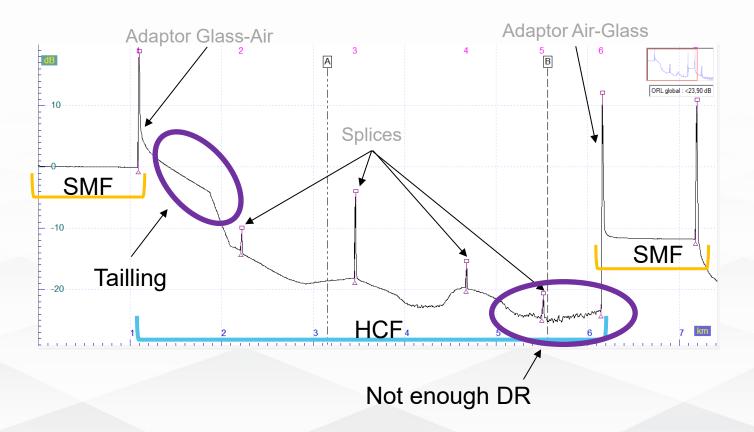
Hollow Core Fiber OTDR Measurements


Inline glass/air transition

Impact on OTDR measurement

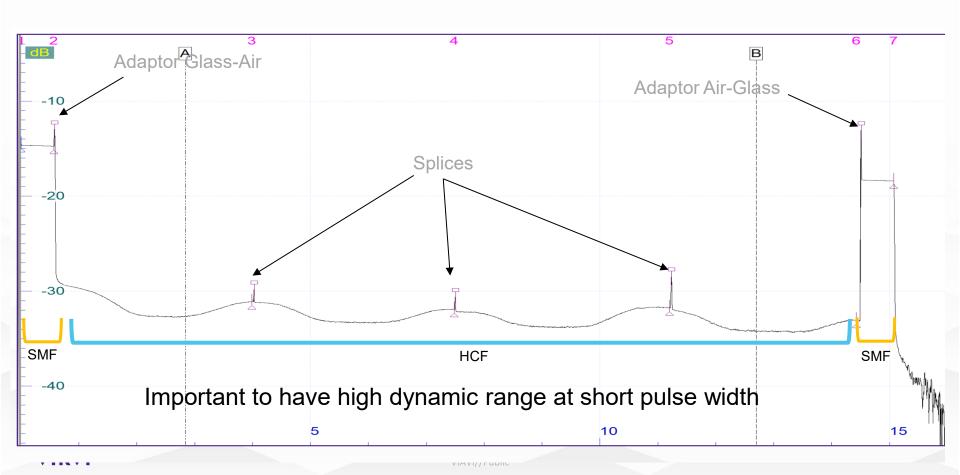
Pulse width/dynamic range/event detection

Typical OTDR Testing Scenario

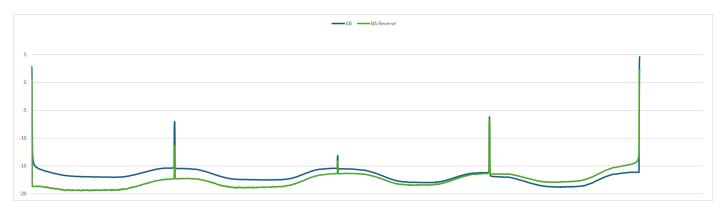

Selecting the right OTDR

Dynamic range and pulse width constraints

Below example for 90 km HFC

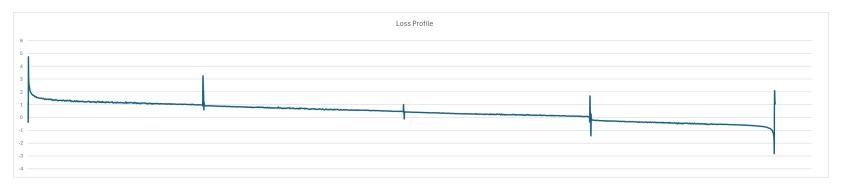

	Loss (dB)
Total fiber loss (90kmx0.1dB/km)	+9
Total splice loss (15x0.2dB) 15 sections of 4km each	+3
Total loss SMF to HCF adapter (2x0.3dB) 1 adapter at each end	+0.6
Signal to noise ratio (dB) Vs. OTDR RMS dynamic range specifications	+6
SMF-HCF RBS diff. (dB)	+15
Dynamic range required (dB) At the shortest possible pulsewidth	=33.6

Typical OTDR trace

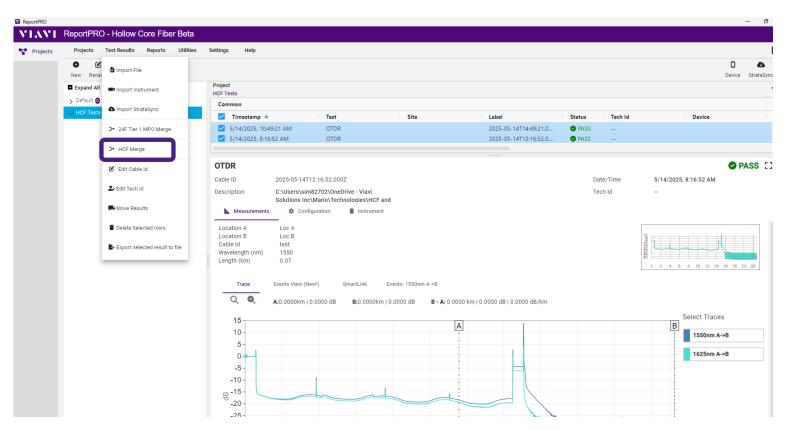


Typical OTDR trace

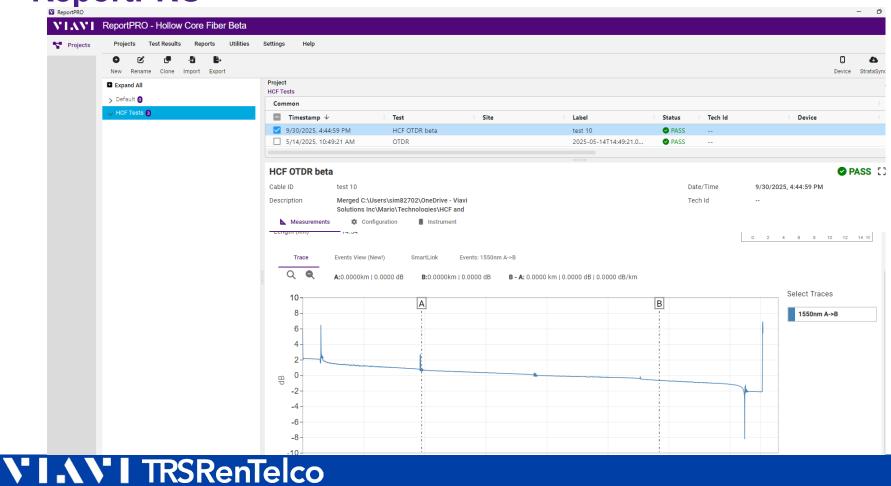
Hollow-Core Fiber analysis with ReportPRO


• Due to the unique trace characteristics (RBS varying along the fiber), standard OTDR post-processing analysis algorithms do not apply.

OTDR traces acquire from testing HCF in both directions


Hollow-Core Fiber analysis with ReportPRO

• It is necessary to match each point/event from each direction, align the two traces and make a bidirectional analysis, (AB-BA)/2, to obtain the actual loss profile.



Loss profile obtained using ReportPro HCF bidirectional analysis

ReportPRO

ReportPRO

Hollow Core Fiber Dispersion Measurements

Dispersion for Hollow Core Fiber

Dispersion tests

In addition to OTDR testing, Chromatic Dispersion (CD) and Polarization Mode Dispersion (PMD) are key for full HCF link characterization.

However, OTDR-based dispersion tests are limited by the 14–20 dB drop in Rayleigh backscatter and dynamic range constraints, making them suitable only for short links.

A more accurate approach uses dedicated equipment like VIAVI's

Optical Broadband Light Source and ODM module, which bypasses these limitations and enables reliable long-distance testing.

Techniques such as phase shift for CD and fixed analyzer for PMD offer precise results with greater dynamic range.

Attenuation Profile for Hollow Core Fiber

Attenuation profile (AP) testing helps identify non-ideal transmission characteristics such as absorption regions caused by for example water vapor, factors that can impact system reliability and efficiency. During manufacturing presence of gas could generate degassing process creating absorption at certain wavelengths. Field trials have shown that some customers request this data to assess link quality and verify performance claims. In this context, attenuation profiling is not just a technical formality, it is a necessary step to build confidence in HCF deployment and to support informed decision-making in real-world applications. To capture the complete AP, the measurement should cover from 1250 to 1640 nm.

Hollow Core Fiber Testing Solutions

Hollow Core Fiber « All-in-one » Field Portable Solution

- (1) 1310/1550/1625 nm OTDR (8136D or 4136C-FCOMP)
- Optical Dispersion Measurements module (CD/PMD and AP) or Optical Broadband Source module (BBS2A)
- (3) Visual fault locator and Broadband Power Meter
- 4) Headset port, 2x USB Ports (for USB key, INX)
- (5) 8-inch Platform
- 6 Connector Endface Inspection Microscope

INX Series

(6)

- Modern 8" High-Vis.
 Multi-touchscreen
- Field proven: lightweight and compact design
- Linux based
- Highly scalable: OLTS,
 OTDR, CD, PMD, AP,
 BERT/Ethernet, OSA
 without module swapping
- Seamless connectivity

All-in-one Instrument = Red zone friendly

ONA800A Kits - Main Software/UI Components

Expert OTDR offers greater depth of analysis and more control. It is designed for users who require manual OTDR trace management and access to advanced test settings.

When FiberComplete PRO is active, Expert OTDR becomes an extension and measurements are correlated.

Instrument Job Manager (IJM) handles job files (VIAVI .json format), guides technicians through a simplified testing process, and consolidates test results and reports (offline).

The Chromatic Dispersion (CD) measurement is based on phase shift method (defined in IEC 60793-1-42 and ITU-T G650.1 standards) offering industry-leading accuracy and speed and, making it suitable for a wide range of applications (from low to high dispersion fibers).

The Polarization Mode Dispersion (PMD) measurement is based on fixed-analyzer method offering industry-leading accuracy and speed and, making it suitable for a wide range of applications (from low to high dispersion fibers in various environmental conditions).

ONA800A Kits - Main Software/UI Components and Post-Processing

Attenuation Profile (AP)

Hollow core fiber (HCF) performance varies by manufacturer due to different design approaches, making post-installation validation critical. Spectral attenuation analysis confirms transmission capability, detects issues like water vapor absorption, and identifies non-uniform behaviors — such as ripples near 1550 nm — that can affect transmission windows. VIAVI is the only provider offering this advanced testing in the field, ensuring the fiber meets the promised dB/km and certifying readiness for transmission equipment deployment.

ReportPRO* (license option RP-HCF) post-processing software is essential for fully characterizing hollow-core fiber. The bidirectional loss profile analysis for hollow core fiber is a must to be able to confirm the fiber has been installed in accordance with the specifications and identify elements such as splices that require rework. ReportPRO aligns the OTDR traces measured from both ends – A to B and B to A – and calculate the difference at each point using the formula [(AB-BA)/2]. This calculation removes inconsistencies caused by variations in HCF backscattering coefficient, providing the "true" loss profile.

*Beta version

The TRS & Viavi Partnership

<u>Exclusive Viavi Rental Partner</u> with the most expansive inventory, including recommended solutions for testing Hollow-Core Fiber.

- Short and Long-Term, Full-Service Rentals
- New Equipment Sales
- Operating Leases
- Lease with Purchase Option
- As low as 0% Financing on Certified Pre-Owned Equipment
- OEM Partner Programs

Questions?

